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Nowadays, Recommender Systems have played a crucial role in several entertainment scenarios by mak-

ing personalised recommendations and guiding the entire users’ journey from their first interaction. Recent

works have addressed it as a Contextual Bandit by providing a sequential decision model to explore items

not tried yet (or not tried enough) or exploit the best options learned so far. However, this work noticed these

current algorithms are limited to naive non-personalised approaches in the first interactions of a new user,

offering random or most popular items. Through experiments in three domains, we identify a negative im-

pact of these first choices. Our study indicates that the bandit performance is directly related to the choices

made in the first trials. Then, we propose a new approach to balance exploration and exploitation in the

first interactions and handle these drawbacks. This approach is based on the Active Learning theory to catch

more information about the new users and improve their long-term experience. Our idea is to explore the

potential information gain of items that can also please the user’s taste. This method is named Warm-Starting

Contextual Bandits, and it statistically outperforms 10 benchmarks in the literature in the long run.
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1 INTRODUCTION

After the past three decades of research and advances, Recommendation Systems (RSs) have
assumed a crucial role in several online services of commerce and entertainment [20, 33]. By
providing personalised recommendations, i.e., identifying the most relevant items (e.g., movies,
books, songs, etc.) according to the user’s preferences, the RSs have directly contributed to max-
imising the user’s engagement, avoiding customer churn, and increasing the company profit over
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the years [19]. In recent reports, most online companies have recognised the business value of their
recommendation engine. Netflix announced that its recommendation and personalisation engines
had produced a business value higher than 1 billion US dollars per year [12]. Similarly, Amazon
and YouTube reported that RSs have been directly responsible for generating 35% of sales and 60%
of the clicked videos in their systems [7].

Nowadays, the recommendation systems have also become responsible for guiding the entire
users’ journey from their first interactions [42, 44, 48]. In real-world scenarios, an RS must
continually choose one item (or a set of items), receive the user’s feedback, and update itself
at each iteration. Recent research have addressed this task as a sequential decision model in
a Multi-Armed Bandit (MAB) problem [3, 13, 40, 43]. MAB is a classic problem from the
Reinforcement Learning theory in which a fixed limited set of resources (arms) must be selected
to maximise the expected gain (reward). At each trial, the system must decide which arms to select,
which order to select, and whether to continue with it or try a different option. For this reason,
MAB usually faces the dilemma between (1) exploiting the arm that seems the best option so far
or (2) exploring an arm not tried out yet (or not tried enough). Exploitation has notions of being

greedy and a high probability of bringing a faster payback but can introduce a regret of missing
unexplored opportunities. In turn, exploration usually has notions of gaining info, but it can take
a long time to ensure enough knowledge for the model and may introduce regret by wasting time
on failures. In general, the optimal solution is achieved by combining these information and greedy

gains.
In the recommendation field, items are usually modelled as the arms to be pulled and the reward

is the user’s feedback on that recommendation (e.g., clicks, acceptance, satisfaction, etc.) [30]. Se-
lecting an arm is equivalent to recommending an item to a system user. Then, while exploitation
means selecting items with a high probability of being rated, exploration means recommending
different items in an attempt to gain more information about users [30, 47]. Again, the challenge
is in how to overcome the dilemma of exploration and exploration. However, the system should
now perform it while providing personalised items to the users. For this reason, current solutions
have handled personalised MAB by implementing Contextual Bandit models that assume a linear
representation among users, items, and rewards [42, 45]. Thus, the bandit model has worked indi-
vidually for each user and provided personalised recommendations that are updated according to
each feedback received [23, 38, 43, 47]. In this case, users and items are modelled as feature vectors
by representing their information into z dimensions of interest. The idea is similar to those applied
by traditional Matrix Factorisation techniques but implemented in an online environment where
these features are continually updated at each iteration [24, 38].

However, despite the current advances, there still are several limitations in the applicability of
these contextual bandit solutions over the entire user’s journey. In scenarios like the pure cold-start

problem, when a new user has just arrived on the platform, it is not possible to define the utility
of any item (i.e., arm) for him/her and it is even harder to mitigate the exploration/exploitation
challenge. There is no information to initialise the users’ features vector used to represent their
interests for each dimension z of the system. Hence, as shown by this work, most linear contex-
tual bandit models have performed as naive non-personalised RSs and made a pure-exploitation of
the information known a prior (similar to a most popular recommendation) or a pure-exploration
of random items. Only a few models, based on Bayesian inference (e.g., Thompson Sampling al-
gorithms) [46], may indirectly combine these concepts of exploration and exploitation since the
first user’s interactions. However, they do not explore smart approaches to improve the system
knowledge. They are simple random approaches over the item’s distribution known a prior, like a
random recommendation of the most popular items.
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In this sense, this work raises three main research questions:

RQ1: Are these naive non-personalised approaches enough to ensure the requirable knowl-
edge for a linear bandit algorithm in the first interactions of new users?
RQ2: How do get more knowledge about the new users in their first interactions?
RQ3: What is the impact of a new strategy that gets more information about the new users
in the first interactions of linear bandit models?

Although the applicability of non-personalised recommendations seems reasonable for new
users, we identify a negative impact of naive approaches by answering the RQ1. Applying a
pure-exploration approach (methods like random or entropy-based) in the first interactions of
a new user can improve his/her long-term satisfaction, but it requires at least three more times
until making personalised recommendations. In turn, applying a pure-exploitation approach
(methods like most popular or best-rated items) often recommend potentially relevant items for
users at the first recommendations. However, these items do not add much knowledge to the
model, because people usually like them—they are the most popular items. The result is a bandit
model with high precision in the first interactions that cannot maximise the accuracy in the long
run.

Then, we propose to answer the RQ2 by addressing both exploration and exploitation goals to
overcome the drawbacks of such naive approaches. Our idea is to apply exploitation to achieve rel-
evance and exploration to get more information in the new users’ first interactions. As the system
does not know anything about the new user, we explore the current information available about
the items: popularity and entropy. Popularity is the number of distinct users who rated the item,
and entropy is the variation of rating values received by each item. While using popularity means
increasing the probability that a user will rate an item (a notion of exploitation), applying entropy
means increasing the amount of information that can be achieved if the user rates the item (a
notion of exploration). Both features are deeply exploited in the Active Learning theory, where
the system must get the most useful items to improve its accuracy in future actions. We use
them to generate the first recommendations for new users and get the requirable knowledge
for such linear bandit models. Contrasting the other two approaches of pure-exploration and
pure-exploitation aforementioned, this new one can identify the user’s preferences quickly and
introduce significant improvements in the user’s long-term experience.

These previous results lead us to assume that such changes in the first interactions may pos-
itively affect the user’s experience in the long run. Then, we propose a new method to make a
Warming-Start of Contextual Bandits (WSCB) and analyse its performance to answer the
RQ3. This method uses a non-personalised Active Learning approach to initialise the features vec-
tor of new users (unknown in the first interaction). Similarly, as mentioned before, we apply the
combination of entropy and popularity to handle the first user’s interactions in a linear bandit
algorithm. The idea is to guide linear bandit models to choose items that will reach enough infor-
mation about the new user in the first interactions and then produce an impact in the long run. In
our opinion, there is a large room to be explored when new users join the system, because their
expectation for high-quality personalised results in the first interactions tends to be smaller. In-
deed, contrasting the WSCB with the most recent approaches of Contextual Bandits, we identify a
significant impact on the accuracy in the long run. WSCB statistically outperforms 10 benchmarks
of the literature in this same scenario.

The main contributions of this work are as follows:

(1) An empirical methodology that demonstrates the impact of non-personalised algorithms on
the user’s experience and the system’s learning in bandit models;
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(2) The combination of an Active Learning approach in Contextual Bandit algorithms to address
exploration and exploitation since the first recommendations;

(3) A new algorithm named WSCB that outperforms all linear contextual bandit recently pub-
lished in the literature.

The remainder of this article is organised as follows. Section 2 explains the background concepts
of this work. Section 3 discusses the pure cold-start problem in current Contextual Bandits. Sec-
tion 4 answers our first two research questions. Next, Section 6 describes our new approach and
answers the third question. Finally, Section 6 presents our conclusions and directions for future
works.

2 BACKGROUND CONCEPTS

Online recommendation scenarios have required a method that can learn from data arriving and
update the predictor model at each iteration [36, 47]. Recent works have applied concepts from
the Reinforcement Learning theory to handle it as a MAB problem [13, 25, 40].

2.1 Multi-Armed Bandits

Facing MAB means proposing a sequential decision model to continually choose an actiona among
a set of actionsA – a.k.a. arms. The selection of action a ∈ A at each iteration t results in a certain
reward R (at ) ∈ R. The main goal in the bandit problem is to maximise the expected rewards
returned

∑
R (at ) over time [30, 47]. However, as the optimal solution is unknown until the user

rates the arm, the system should try distinct arms and learn with them. One possible solution
is more conservative, pulling arms with the highest rewards in the past—exploitation. Another
solution tries different arms to gain information and make better future decisions—exploration.

Traditional solutions, such as ϵ-Greedy [47], Upper Confidence Bounds (UCB) [38], and
Thompson Sampling (TS) [6] handle these competitive goals in distinct ways. While ϵ-Greedy
only performs a naive diversification with the parameter ϵ , the other two perform smarter strate-
gies. UCB models a confidence range for each arm and first selects the one with the highest uncer-
tainty. TS draws an unknown distribution for each arm to predict the expected reward according to
the arm uncertainty. Even after the years, these algorithms have been usually applied as a baseline
for any online environment. However, these approaches usually require that each item must be
recommended at least once for each user—an unfeasible possibility in real-world scenarios these
days.

2.2 Contextual Bandits

In most bandit algorithms in RS, each item i ∈ I to be recommended is modelled as an arm a to
be pulled and the reward R (at ) is the user response ru,i (t ) (e.g., clicks, ratings, satisfaction, etc.)
for that item in the trial t [30]. Again, the goal is to maximise the expected accumulated reward
(i.e., the positive user’s interactions). However, in the recommendation field, the expected reward
should be defined by the relevance of each i for a specific user u. In general, this predicted rating
r̂u,i is based on the correlation between the item i and the user u profile (Collaborative Filtering

(CF)). Thus, the goal is to maximise the predicted rating r̂ or minimise the difference between the
r̂ and the real user reward r over the T trials,

Maximise

T∑
t=1

r̂t ≡ Minimise

T∑
t=1

(rt − r̂t ). (1)

In this sense, current efforts have been applied in Contextual Bandit models, because they es-
timate r̂ as the combination of CF concepts and MAB characteristics [38, 47]. A group of works
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Fig. 1. Distinct stages of the user experience.

describes the reward structure in clusters of users and/or items to define items’ utility similarly
to memory-based methods [11, 24, 32]. In turn, model-based approaches usually apply a Proba-

bilistic Matrix Factorisation (PMF) formulation to represent users and items in two low-rank
matrices P ∈ Rm×z and Q ∈ Rz×n . While the first matrix represents the multiple interests of each
user u in the z features (pu ), the second one represents how relevant is each item for the z features
(qi ). The predicted rating is estimated as r̂i,u = p�u qi [38, 49]. Thus, the recommended item i will
have the highest r̂u,i during theT trials as follows. Current efforts have focused on how to optimise
this objective function in bandit approaches, such as ϵ-Greedy, UCB, and TS [6, 23, 38, 47],

i∗ = arg max
∑
t ∈T
E [ru,i (t ) |t] = arg max

∑
t ∈T
E [p�u qi (t ) |t]. (2)

3 PURE COLD-START PROBLEM IN CONTEXTUAL BANDITS

Contextual Bandits have been highly effective in the recommendation task, because they can cap-
ture non-trivial relations between items and users [4]. The disadvantage, however, is in the absence
of data, where the system would not ideally have enough instances to represent these relations.
The challenge has been centred on the absence of user information, especially after the recent
advances in textual processing and categorical interpretation, where the systems could better rep-
resent the item’s metadata. And unfortunately, it is a common issue in interactive scenarios when
the system will simulate the complete user’s journey since his first interaction [10, 17, 39].

3.1 Problem Formulation

There are at least two critical challenges related to the lack of information during the user’s journey
into the system. They are illustrated in Figure 1. The first one is known as Pure Cold-Start, and it
happens during the first user’s interaction or when s/he logs into the system without identifying
yourself. In this case, the system does not have any information about the user and cannot provide
personalised recommendations [17, 34]. After some interactions, RSs will know more about the
user, but it would not be enough to define his/her profile. This scenario is called Cold-Start and
has been studied for several works over the past few years [4, 18, 36].

Mitigating both challenges is crucial for the success of any interactive RSs [18, 36]. However, we
noticed that the current works had underestimated the Pure Cold-Start problem in linear bandit
models. As the users and items are usually modelled according to the dataset D ∈ Rm×n previous
available, these works have worked to define the multiple interests of each useru in z features (pu )
and how relevant is each item for the same z features (qi ). Nevertheless, when the system does
not have any information about a new user (i.e., Du = ∅), this linear-based representation cannot
define the user’s features vector pu . Despite being apparently obvious, it opens an optimisation
problem about how to estimate the features vector pu when Du = ∅ for online recommendation
scenarios without compromising his/her subsequent interactions in the system.
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3.2 Practical Outgrowths

Assuming that the bandit can always learn regardless of the first items recommended for each
user, most bandit models do not apply any strategy to mitigate the pure cold-start problem. Their
idea is to let the system learns the user’s preferences with their interactions. Current works have
initialised the user’s features by evidencing that the new user has no preferences (not yet) about
any item or feature in the system. In the practice, evidence that users do not have any preference
over the items in the system means to initialise the its pu vector with constant values: pu = {c}∀z

(c ≥ 0). However, this simple initialisation can introduce undesirable bias in the recommendations,
as this work notices.

If the values used to initialise the features vector are 0, a usual approach in the current imple-
mentations, then the user features vector pu will guide the objective function to 0, independently
of the item features vector. The result is a uniform selection of items (i.e., random or based on
the actual items order) with the same relevance score for this user: {s (i,u) = 0 : ∀i ∈ I }. In turn,
if these values are represented by a constant c > 0, another possible approach, then the items
features vector will become the unique relevant term of the objective function and the relevance
score will follow its distribution – {s (i,u) ∼ qi : ∀i ∈ I }. The result is a recommendation fully
biased for the most representative items that were defined according to the linear representation
made before,

Prediction Rule: i∗ (t ) = arg max
i ∈I

p�u qi

(t = 0)
⎧⎪⎪⎨
⎪⎪
⎩

pu = {0 : z ∈ Z } → i∗ (0) = arg max
i ∈I

0 · qi (random)

pu = {c : z ∈ Z } → i∗ (0) = arg max
i ∈I

c · qi (biased).

Therefore, every contextual bandit algorithm is compelled to choose between two distinct
options:

(1) a pure exploration approach by recommending items randomly; or
(2) a pure exploitation approach by recommending items biased by the previous knowledge.

The first option assumes that users are willing to interact for a long time, and the algorithm is
concerned with learning more about the users’ preferences. In turn, the second one assumes that
users can leave the system after a few interactions and, thus, the system has to recommend items
potentially relevant for users as soon as possible. Indeed, both assumptions are highly relevant.
Nevertheless, here, they represent the well-known dilemma between exploration and exploitation
from a new point of view: in the first users’ interactions. Should we allow users to make their own
choices and thus possibly lose the opportunity to sell something? Or should we assume they are
impatient and recommend the best options, losing the opportunity to learn what they like? We
believe both options must be addressed in this work to improve the system’s user experience. An
ideal system should offer its best options and help learn the users’ preferences as soon as possible.

3.3 Problem Impact in Current Bandit Solutions

Inspecting the current linear approaches for traditional bandit algorithms (ϵ-Greedy, UCB, and
TS), we notice that each of them will follow one specific option according to the way they have
implemented the prediction rule.

(1) As linear ϵ-greedy algorithms usually measures the item’s relevance by the product of fea-
tures vectors pu and qi , its predictions can change according to the values used to initialise the
user’s features vector. If c = 0, then the algorithm will perform a pure-exploration of the items by
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recommending them randomly. Otherwise, when c > 0, it will perform a pure-exploitation of the
items’ features.

(2) In turn, linear UCB algorithms implement a confidence bound to represent its uncertainty
over the items and users. This confidence bound is usually measured by the combination of the
item’s features vector qi with an uncertainty over the user at that trial t , named Σu,t . This com-
ponent Σ is initialised as a simple identity matrix I and it is updated at each trial t . It usually
performs,

i∗ (t ) = arg max
i ∈I

p�u,tqi +

√
qi · Σu,t · qi

�. (3)

Thus, even if c = 0, the vector qi will guide the prediction rule due to the confidence bound
associated. In other words, these algorithms will always perform a pure exploitation of the previous
item’s knowledge,

if pu = {0}, then: i∗ (t ) = arg max
i ∈I

√
qi · Σu,t · qi

�. (4)

(3) Linear TS algorithms usually estimate the feature vectors by sampling p̂u,t from
N (pu,t |μu,t , Σu,t ). The variance Σ is the uncertainty around that user and starts from an identity
matrix I . In turn, the mean μ is measured based on the items that the user rated and is initialised
by the distribution of values c . In this case, regardless of the value assumed by c , the algorithm will
sample pu from a distribution centred in c . Thus, TS algorithms will create a normal distribution
for pu and disturb the prediction rule. As pu can assume any value around c , the prediction will be
defined by combining these “random” values over the qi distribution. Thus, these algorithms can,
in a certain way, combine exploration and exploitation to perform the first recommendations.

Moreover, studying the item’s features vector qi in three usual datasets from distinct scenarios
(movies, books, and songs) in the recommendation field,1 we figured out that qi is extremely bi-
ased toward the most popular items. Assuming that the missing values of each dataset are 0 and
applying a simple Singular Value Decomposition (SVD) algorithm with 10 eigenvalues,2 we
can notice that the items feature vector significantly correlates with the popularity. In Figure 2,
each blue point represent an item of the system. While the x-axis is a summarisation of the item’s
features (i.e., xi = qi · qi

�), the y-axis contains the popularity of each item (i.e., the number of
ratings received normalised by the bigger popularity value). The correlation can be noticed by the
linear representation of these points and the Spearman value highlighted in green. Thus, recom-
mendations based on the item feature vector qi tend to be similar to the most popular items.

4 RELATED WORKS

The problem of addressing exploration and exploitation, since the first recommendations in Con-
textual Bandits has not been deeply studied yet. The most similar works are those related to the
cold-start problem due to their concern about the first user’s interactions [17, 34]. However, most
of them do not fit the context of this work, where the algorithms should be able to (1) handle users
since the pure cold-start problem, where there is no previous knowledge available (e.g., without
1 item rated or no social information), and (2) adapt themselves after each new user’s feedback, as
proposed in an interactive scenario. In this sense, we only identified three classes of algorithms
that can handle it:

(1) State-of-the-art Contextual Bandits. In the literature, there are several algorithms to work
with partially observable or unobservable contextual factors. Algorithms like LinUCB [23],

1These datasets are described on details in Section 5.2.
2If we increase the number of eigenvalues, then the correlation grows proportionally.
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Fig. 2. There is a significant correlation between the items features vector of MF algorithms (represented by

the vector qi ) and the most popular items in three distinct scenarios.

FactorUCB [38], hLinUCB [37], and CoLin [43] explore explicit information about the user (demo-
graphic, geographical, and others) and the items (descriptions, categories, and others). Other ones,
like FactorUCB, CoLin [43], Linear UCB [47], and GLM-UCB [47], explore unobservable factors
by modelling users and items with a Probabilistic Matrix Factorisation approach. Moreover, more
recently, new algorithms like the hLinUCB [37] have been proposed to aggregate the partially
observable information about the users with the latent factors usually applied in the field.
However, as this work proposes to study the scenario with the total absence of user’s information,
we do not apply any strategy that requires partially observable factors. We decided to use the
algorithms highlighted in bold, because they are competitive baselines for the WSCB algorithm.

(2) Meta-Learning approaches. Similarlyaw to the Active Learning theory, Meta-learning is a class of
Reinforcement Learning algorithms recently popularised for training easily generalised machine
learning models. The idea is to create models that can rapidly adapt to a new task that is not used
during the training with only a few examples [22]. It is inspired by the human learning process,
which can quickly learn new tasks based on a few examples. The recommendation field has been
adapted to help the system deal with the huge number of users that must receive a personalised
recommendation. The idea is to consider each user as a single task and create a learning environ-
ment with a set of users to teach algorithms how to deal with new tasks (i.e., new users). The
first work proposed in this sense was MeLU [22], a meta-learning strategy to get candidate items
for new users. However, it is not an interactive approach that updates the knowledge about the
user’s preferences at each trial. Then, a recent work has proposed an interactive model that uses
Meta-Learning to guide a neural network learning [50]. Such an approach is named NICF and we
selected it as a baseline for our work.

(3) Bayesian Inference methods. These algorithms are based on probabilistic distributions to make
inferences when very little evidence is available. Thus, they have been directly applied to deal
with the cold-start scenario in the recommendation field. They usually are variations of the tra-
ditional Thompson Sampling by applying a Beta distribution to fit each arm’s probability of
success and failure with two positive parameters: α and β . They can be used to learn the arms
relevance before the interactive recommendation, through a training sample, or even learn it over
the user’s interactions. If they choose to learn in live, then they will explore different arms in the
first recommendations until they learn the best options. In turn, if they choose to learn before the
recommendations, then they will exploit the most successful arms (i.e., the most popular options).
In this class of algorithms, we can highlight PTS [21], ICTRTS [40], and Cluster-Bandit [30].
PTS introduces a particle filtering process to guide the recommendations made by a PMF formula-
tion. In turn, ICTRTS applies a TS and particle filtering approach combined with a topic regression
model to handle the dilemma of exploration and exploitation. Finally, Cluster-Bandit is a variant of
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Fig. 3. An illustration of our methodology created to identify the problem’s impact on contextual bandits.

the nearest-neighbours collaborative filtering algorithm but endowed with a controlled stochastic
exploration from a Beta distribution. All of these three algorithms are baselines for this work.

Other works, such as those based on graph neural networks [14–16], are not in the scope of this
work, because they require at least 10% of the users’ interactions and they have not been adapted
to the online scenario yet.

5 CONTEXTUAL BANDIT INITIALISATION

In general, applying non-personalised RSs to face the pure cold-start problem is plausible and well
accepted by the RS community. Indeed, these approaches have been applied in different commerce
and entertainment systems over the years until now [34]. However, as raised by our RQ1, are these

naive non-personalised approaches enough to ensure the required knowledge for the linear bandit

algorithms? We believe that naive approaches can waste the opportunity to learn more about new
users when they do not have a high expectation of personalised recommendations. Thus, as raised
by RQ2, the question is how to get more knowledge about the new users in their first interactions? To
study both of them, we create an evaluation methodology that simulates the system’s behaviour
when it faces new users in three distinct scenarios.

5.1 Evaluation Methodology

To study our first research question about the initialisation of current contextual bandits, we design
an evaluation methodology to simulate the same experience of a new user in the system. This
methodology splits the user’s interaction into two main stages: (1) when s/he is joining the system
(to simulate the cold-start problems) and (2) his/her normal interaction (to simulate the sequential
decision problem). Thus, the first f interactions of the new users happen in stage 1, and, after that,
s/he is moved to stage 2. Similarly to the real behaviour of current systems, stage 2 will use the
previously acquired knowledge to make new recommendations. We aim to measure the impact of
this knowledge created in stage 1 in the recommendation task during stage 2. Each stage consists
of one interactive algorithm with its selection policies and recommendation rules, as shown in
Figure 3. While in the second one, we should set the policies related to a bandit algorithm, in the
first one, we should apply the strategies we intend to initialise the models.

Stage 1: It is an interactive scenario to simulate the first recommendations of Contextual Bandit
to new users and get their feedback on each recommended item. Basically, it receives an entirely
new user (without any information) and performs non-personalised recommendations for f inter-
actions until s/he becomes no longer a cold-start one. However, as there is no consensus in the
literature about the value f , we define it by the amount of information σ got by the system for
each new user. This knowledge σ can be represented by the number of relevant items hit from
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Table 1. An Overview of the Datasets Applied

in This Work

Datasets # Users # Items Sparsity

Netflix 10,000 17,372 98.67%

GoodBooks 53,423 10,000 98.88%

Yahoo Music R1 10,000 13,214 99.22%

the user’s historical actions. Thus, in an experiment, we can assume that a new user is no longer
a cold-start after the system hits 10% of his/her relevant items. Then, we can change this value to
20%, 30%, . . . , 80% and do an exhaustive experiment to answer our first two research questions. It
creates at least eight possible scenarios for each new user before s/he moves to stage 2. To make
this experiment available, we can assume that the system will recommend five items per each
interaction.

Stage 2: It is another interactive scenario where an agent continuously recommends a list of items
to the target user. However, in this stage, the user is no longer completely new. After stage 1, this
user has already interacted with some items, and there is an amount of knowledge σ about his/her
preferences. So, the idea is to make more recommendations based on this knowledge according
to a standard prediction rule of Contextual Bandits. Thus, the effectiveness of the bandit model
on stage 2 will be directly related to the amount of knowledge achieved before by the approach
applied on stage 1. At this stage, the algorithm can recommend one item per interaction.

The main advantage of this methodology is the possibility to measure the impact of the problem
discussed in this work. Based on the number of interactions f in stage 1, we can measure how long
the new user had to wait until the system starts to apply a personalised method. Moreover, by
measuring the accuracy of the linear bandit algorithm in stage 2, we can also measure the impact
of the first recommendations on the user’s experience.

5.2 Experimental Setup

We build an experimental setup to simulate the scenario of new users joining the system for the
first time and apply our evaluation methodology.

Datasets. First, we select the three traditional datasets described in Table 1. Then, we select the
last 20% of users that joined the system (i.e., users with the highest timestamps) to represent
the new users. It means 2,000 users on Netflix, 10,648 users on GoodBooks, and 2,000 on Yahoo.
The other 80% of data is used to train the algorithms, representing the information already in a
system. All information about these new users (ratings, demographic information, and others)
is removed from the training set. To make possible our interactive experiment, we filtered all
datasets to ensure that users will have at least 20 items rated, because we want to evaluate the
user’s long-term preference similar to other works [10]. For those with many users (Netflix and
Yahoo), we selected 10,000 random users in the dataset to facilitate our exhaustive experiments.

To study our research questions, we select naive and innovative approaches to be applied
in stage 1 of our evaluation methodology. The naive ones represent the first recommendations
made by current Contextual Bandits, as discussed in Section 3. First, we want to answer whether
these approaches are insufficient to minimise the system uncertainty about new users. Then, the
innovative approach represents a potential solution to our second research question. The idea is
to improve the learning process and maximise the bandit accuracy in the long run. For stage 2
of our methodology, we select the Linear ϵ-Greedy algorithm (based on SVD formulation) as the
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interactive RS, because it has a higher variance in its results. It will provide 10 more interactions
after each experiment is finished in stage 1.

Naive Non-Personalised Approaches. To analyse the impact of the naive assumptions made by
current Contextual Bandit models, we select four non-personalised approaches. They are related
to the naive assumptions of the following:

(1) pure-exploration: Random and Entropy-based algorithms;
(2) pure-exploitation: Most Popular and Best-Rated algorithms.

Innovative Approach. In addition, as a potential solution for our second research question, we
also evaluate the performance of another non-personalised strategy. This strategy is smarter than
the others, because it can ensure the tradeoff between exploration and exploitation even in the first
interactions of the new users. It comes from the Active Learning theory [9, 27], and it combines the
loд of popularity and the entropy of the items. In this work, both concepts are defined as follows:

— Popularity of an item i is the number of users who have rated i;
— Entropy of an item i is measured by

∑
r ∈R −P (r |i ) · log P (r |i ), where P (r |i ) is the probability

of one item i being rating by a value r ∈ R. This probability P (r |i ) is the proportion of ratings
r received by the item i from all users.

Introducing popularity, we want to increase the probability that a user will rate an item (i.e., a
notion of exploitation). However, by applying entropy, we intend to increase the amount of infor-
mation that it is possible to be achieved if the user rates the item (i.e., a notion of exploration).

5.3 Discussion

Figure 4 shows the results of our evaluation methodology when applied to each dataset previous
selected. In both figures, the x-axis represents the level of knowledge σ achieved by stage 1 of
our methodology. As previously mentioned, this knowledge is measured by the percentage of
relevant items hit by the recommendation model from the total of relevant items available—the
same concept as the recall metric. Then, in Figure 4(a), in the y-axis, we plot the average of
interactions spent by the new users to reach each level of recall. In turn, the y-axis of Figure 4(b)
presents the average precision achieved by 10 other interactions of these users with the bandit
model in stage 2. Thus, we can measure the effort of each non-personalised approach (in stage 1)
to get the user’s preferences and the quality of the recommendations made with this previous
knowledge.

In a simple observation, pure-exploration approaches seem the best ones for new users, because
they guide the bandit algorithm to achieve the highest level of precision (Figure 4(b)). However,
to ensure this level of precision, these approaches require that users face so many items. In our
experiments, for instance, Random or Entropy-based approaches require that users analyse more
than 8,000 items (∼2,000 interactions × five items recommended) to reach 80% of the user’s history
(i.e., recall) Netflix and Yahoo (Figure 4(a)), which is not feasible in practice, mainly because the
user may not be so patient. Indeed, this is why current systems usually choose pure-exploitation
approaches (like Most Popular and Best-Rated) to make the first recommendations. On average,
they often require less than 500 iterations (2,500 items) to achieve 80% of relevant items for each
user. However, our analysis shows that these approaches do not have the same impact on the
bandit’s performance (Figure 4(b)). These non-personalised RSs are based on global preferences.
Then, as a consequence, they do not add so much knowledge about the system’s users. Applying
a bandit algorithm after approaches purely based on exploitation does not achieve high levels
of precision. It answers our RQ1 by empirically demonstrating the negative impact of these naive
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Fig. 4. The impact of a naive initialisation of current Contextual Bandit models. While pure exploration (Ran-

dom and Entropy-based) takes more interactions to achieve higher recall, pure exploitation (Most Popular

and Best-Rated) does so fast. However, this fast learning considerably impacts the model’s performance as a

whole. The initialisation based on exploitation and exploration simultaneously (Popularity vs. Entropy) can

improve the system’s precision without requiring many initial interactions.

approaches in such bandit models. Only applying most popular or random algorithms to make the
first recommendations is not the best option for the other bandit interactions.

In turn, the approach that combines Popularity vs. Entropy answers the RQ2. By weighing items’
popularity with the entropy, the system can identify interesting items for users and increase its
knowledge. The practical result is an approach that requires only a few interactions (quite similar
to pure exploitation approaches) but achieves more precision gains in the user’s long-term run.
Although this combination does not bring the same knowledge achieved by pure exploration ap-
proaches, it also does not require many interactions to identify the user’s taste. Thus, evaluating
both results of Figure 4(a) and (b) simultaneously, we can notice that our innovative approach is
more effective than others. It answers our second question, RQ2, by emphasising that exploration and

exploitation concepts should be addressed from the first interactions of the new users.

6 ACTIVE LEARNING IN CONTEXTUAL BANDITS

Answering RQ1 and RQ2 about the impact of the first interactions of a new user in the whole
scenario, we open a new opportunity to improve bandit algorithms. Our innovative approach based
on concepts from the Active Learning theory seems effective in improving the learning stage of
linear bandit algorithms. Thus, the current challenge is related to the question raised by our RQ3:
What is the impact of a new strategy that gets more information about the users in the first interactions
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of current linear bandit models? In this section, we study this question by proposing a new bandit
algorithm that has never been studied in the literature yet.

6.1 Active Learning

In the literature, Active Learning approaches have been proposed to improve the training processes
of several Machine Learning algorithms that often require a considerable amount of high-quality
data [31]. Their idea is to select the best candidate data points by querying for certain types of
instances based on the system’s data so far. In recommendation systems, Active Learning has been
constantly motivated by the need to implement more effective sign-up processes [8]. In the sign-
up stage, the system actively selects and proposes individual items or groups of items to be rated
by the users [1, 28, 29]. For that, the system evaluates the entire set of items and selects the items
that are estimated to be the most useful ones. The idea is to select the items that may improve the
accuracy of the system.

However, to the best of our knowledge, these approaches have not been addressed in Contextual
Bandit algorithms for the interactive scenario. The few works that have applied Active Learning
approaches in this way have been focused on introducing a learning stage before the item recom-
mendation [5, 9]. The idea is to search for the best items between a set of potential candidates
by minimising the loss function, as proposed in the Active Learning theory. Despite its advan-
tages, this approach is not applicable in real-world scenarios, and the algorithms may introduce
some bias by sub-selecting a set of items from the system. In this work, we propose a new way to
combine one of the most promising Active Learning strategies with linear Contextual Bandits. By
applying this strategy, we assume we can address both concepts of exploration and exploitation
from the first user’s interaction.

6.2 Warming-Start Contextual Bandits

Changing the current bias of Contextual Bandit algorithms on delivering naive non-personalised
items during their first recommendations is not easy. As the problem is intrinsically related to
their prediction rule, any huge change can wrongly influence these methods to combine the user’s
and item’s features. Thus, we do not propose changing how these algorithms usually work. We
propose introducing more information about the system to help these algorithms to mitigate the
Pure Cold-Start problem. The idea is to use the information available about the items to warm-start
the user’s profile and improve the first recommendations.

In this sense, we address two concepts around the items to collect more information about the
system: (1) popularity (to maximise the probability of an item being rated); and (2) entropy (to
increase the amount of information that is possible to obtain if the user rates the recommended
item). While the first one introduces a notion of exploitation, because it suggests, in general, the
best items in the system, the second represents a notion of exploration once it is interested in the
potential knowledge of each item. In this work, the popularity ρ of an item i is measured by
the number of distinct users who rated i . In turn, the entropyϕ is

∑
r −P (i |r ) ·logP (i |r ), where P (i |r )

is the probability of an item i being rated with the rating r (usually define in a range of 1–5). We
propose to make the first recommendation (when t = 0) being equivalent to the non-personalised
Active Learning strategy that combines popularity and entropy, as illustrated in Equation (5),

i∗(t=0) = arg max
i ∈I

p�u qi ≡ i∗(t=0) = arg max
i ∈I

log ρi · ϕi . (5)

Thus, to make this approach available, we should approximate the rule p�u · qi of the values
achieved by multiplying popularity and entropy. As the item features vector qi ∈ Q can be mea-
sured even on the user cold-start scenario, the challenge is to estimate the user’s feature vector pu .
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This vector is then called as x and the goal is to minimise the difference to the set y (popularity vs.
entropy) by minimising Equation (6),

f (x ) =
∑
i ∈I

(yi − x� · qi )2, where yi = log ρi · ϕi . (6)

In this sense, we apply a quasi-Newton method of BFGS [26] to estimate values for x. BFGS
aims to gradually minimise the loss function f (x ) obtained through a gradient evaluation method.

Starting from a vector of constants −→x0 = {1}z , for n iterations, the method estimates the next vector
minimising the difference for the previous one: xn+1 = xn − [H (xn )]−1∇f (xn ). The Hessian matrix
H is a square matrix of second-order partial derivatives of f (x ). Then, it creates a new vector x
with dimensions (1 × z), where z is the number of latent factors of the Matrix Factorisation,

n iterations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪
⎩

−→x1 ← −→x0 − [H (−→x0)]−1∇f (−→x0)
−→x2 ← −→x1 − [H (−→x1)]−1∇f (−→x1)
...

X ← −−−→xn−1 − [H (−−−→xn−1)]−1∇f (−−−→xn−1)

.

This information added is not associated with any sensitive information about the new users,
like social or demographic. For this reason, it can be adapted for any other Contextual Bandit. In
this work, we adapted a linear UCB-based algorithm, as illustrated in Algorithm 1. Our proposal is
named WSCB, and it gets the item features of a SVD method and uses it to compose the prediction
rule. First, we estimate the values x that must be used to initialise pu when t = 0 (line 1). This
estimation is made by a BFGS method using the combination of popularity and entropy (y) and the
item’s feature vectors (Q). This new vector x is the same for all new users and does not substantially
increase the execution time. At each trial, the user’s features vector pu will be estimated from
this set x (line 4) and used to estimate the next item to be recommended (line 5). In this way, the
bandit algorithm will not start its search from a random or biased point but from a more promising
strategy. Then, this vector x will be updated at each iteration based on the latent values of the rated
item (line 8).

ALGORITHM 1: Warm-Starting Contextual Bandits (WSCB)

Require: Item features vector Q = {q1, . . . ,qn } from SVD and the vector y with the items popu-
larity weighted by the entropy

1: x ← BFGS : Min f (x ) using (y,Q )
2: Σu,t ← Id
3: for t = 0, 1, 2, . . . ,T do

4: Estimate pu,t = Σ−1
u,t · x

5: it
∗ = arg max

i ∈I

p�u,tqi + | |qi | |2,Σu,t

6: Receive the reward ru,i∗ (t )

7: Update Σu,t ← Σu,t + qi∗ (t ) · q�i∗ (t )

8: Update x← x + ru,i∗ (t ) · qi∗ (t )

6.3 Experimental Setup

To evaluate our proposal and answer our third research question, we perform an experimental eval-
uation to compare the WSCB with several baselines of the literature in traditional datasets. This
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evaluation is done through the iRec [35], a framework for interactive recommendation systems
recently published in the literature. All codes and experiments are also available in the GitHub.3

Datasets. As described in Section 5.2, to simulate the cold-start scenario, we select the new users
(test set) as the last 20% to join the system and remove all their information from the training.
The other 80% of data is used to train the algorithms. For these experiments, we also added the
traditional MovieLens 1M dataset. Our idea is to allow an easier comparison of our results with
the previous works published in the literature.

Baselines. In this work, we compare the WSCB with 11 baselines: two simple non-personalised
algorithms (Random and Popular); three traditional MAB algorithms adapted to the RS field (ϵ-
Greedy, UCB, and TS); and competitive baselines from the three classes of algorithms related to
this challenge (those marked in bold and discussed in detail in Section 4). They are as follows:

— ϵ-Greedy [2]: This is a classical bandit model that random explores other arms with
probability ϵ .

— UCB [2]: This calculates a confidence interval for each item and tries to shrink the
confidence bounds at each iteration.

— TS [6]: This follows a Gaussian distribution of items and users to predict based on samples.
— Linear UCB [47]: This is an adaptation of the LinUCB [23] with the PMF latent dimensions.
— GLM-UCB [47]: This is an adaptation of the Linear UCB with a sigmoid form that makes

a time-dependent exploration.
— ICTRTS [41]: This is a topic regression model that utilises the TS and controls the items

dependency by a particle learning strategy.
— NICF [50]: This is a CF based on a neural network that performs a meta-learning of the

user’s preferences.
— PTS [21]: This is a PMF formulation for the original TS that applies particle filtering to

guide the exploration of items over time.
— Cluster-Bandit (CB) [32]: This is a bandit algorithm based on clusters to face the cold-start

problem.

For all baselines, we perform an extensive grid search for the best parameters in a validation set
(20% of the training). We followed the same parameters suggested by each original paper when the
authors were reported in this step. We followed these reported parameters for most algorithms and
tried to identify other values that could improve the recommendation quality. In Reference [47],
for instance, the authors only report some parameters of Linear UCB and GLM-UCB without pro-
viding the range of values studied. Here, we explored their parameters more by focusing on the
PMF model. Unfortunately, for other algorithms, like NICF [50], we had to follow the parameters
available in their code and try to infer other ranges of values according to our knowledge, be-
cause the authors did not report any parameter. The final result of this extensive exploration is
then described in Table 2, where we showed the best parameters applied for each algorithm in the
scenarios evaluated in this work.

Evaluation Policy. As the interactive scenario has been recently studied in the literature, there is
no consensus about the best practices to evaluate bandit algorithms. In this sense, we searched for
all policies available on the articles from our SLR and then proposed the evaluation policy described
on the Algorithm 2. This evaluation is similar to a recent one proposed in Reference [30]. Each trial
represents a user’s interaction with the system when one item is recommended, and the user will

3Available at: https://github.com/ncsilvaa/wscb.
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Table 2. Best Parameters Identified for Each Algorithm after Using the Grid Search

Netflix Good Books Yahoo Music R1 MovieLens 1M

Random — — — —

Popular — — — —

UCB c = 0.01 c = 0.25 c = 0.01 c = 0.001
TS α0 = 1, β0 = 100 α0 = 1, β0 = 100 α0 = 1, β0 = 100 α0 = 0.2, β0 = 100
ϵ -Greedy ε = 0.001 ε = 0.1 ε = 0.0001 ε = 0.001

Linear UCB

� α = 1, T = 20
� σ 2

q = 0.01, σ 2 = 0.05

� num_lat = 20
� stop_criteria = 0.0009

� q2
p = 0.01

� α = 1, T = 20
� σ 2

q = 0.01, σ 2 = 0.05

� num_lat = 10
� stop_criteria = 0.0009

� q2
p = 0.01

� α = 1, T = 20
� σ 2

q = 0.01, σ 2 = 0.05

� num_lat = 20
� stop_criteria = 0.0009

� q2
p = 0.01

� α = 0.7, T = 20
� σ 2

q = 0.01, σ 2 = 0.05

� num_lat = 15
� stop_criteria = 0.0009

� q2
p = 0.01

GLM-UCB � c = 4, T = 20
� σ 2

q = 0.01, σ 2 = 0.05

� num_lat = 10
� stop_cr iter ia = 0.0009

� q2
p = 0.01

� c = 4, T = 20
� σ 2

q = 0.01, σ 2 = 0.05

� num_lat = 10
� stop_cr iter ia = 0.0009

� q2
p = 0.01

� c = 4, T = 20
� σ 2

q = 0.01, σ 2 = 0.05

� num_lat = 10
� stop_cr iter ia = 0.0009

� q2
p = 0.01

� c = 4, T = 20
� σ 2

q = 0.01, σ 2 = 0.05

� num_lat = 10
� stop_cr iter ia = 0.0009

� q2
p = 0.01

NICF
� batch = 256
� clip_param = 0.2
� dropout_rate = 0.01
� gamma = 0.0
� inner_epoch = 50
� latent_factor = 10
� learning_rate = 0.001
� num_blocks = 1
� num_heads = 2
� restore_model = False
� rnn_layer = 2
� time_step = 100
� training_epoch = 4000

� batch = 256
� clip_param = 0.2
� dropout_rate = 0.01
� gamma = 0.0
� inner_epoch = 50
� latent_factor = 10
� learning_rate = 0.001
� num_blocks = 1
� num_heads = 2
� restore_model = False
� rnn_layer = 2
� time_step = 100
� training_epoch = 4000

� batch = 256
� clip_param = 0.2
� dropout_rate = 0.01
� gamma = 0.0
� inner_epoch = 50
� latent_factor = 10
� learning_rate = 0.001
� num_blocks = 1
� num_heads = 2
� restore_model = False
� rnn_layer = 2
� time_step = 100
� training_epoch = 4000

� batch = 256
� clip_param = 0.2
� dropout_rate = 0.01
� gamma = 0.0
� inner_epoch = 50
� latent_factor = 10
� learning_rate = 0.001
� num_blocks = 1
� num_heads = 2
� restore_model = False
� rnn_layer = 2
� time_step = 100
� training_epoch = 4000

PTS
� num_lat = 10, D = 5
� σ 2 = 0.01
� σ 2

U
= 0.173, σ 2

V
= 2.65

� num_lat = 5, D = 2
� σ 2 = 0.5
� σ 2

U
= 1.0, σ 2

V
= 1.0

� num_lat = 10, D = 5
� σ 2 = 0.173
� σ 2

U
= 0.01, σ 2

V
= 0.3

� num_lat = 10, D = 5
� σ 2 = 0.5
� σ 2

U
= 0.01, σ 2

V
= 0.3

ICTRTS
� num_lat = 2, B = 5 � num_lat = 2, B = 5 � num_lat = 2, B = 5 � num_lat = 10, B = 2

CB � B = 5, C = 0.5, D = 3
� num_clusters = 8
� num_lat = 10

� B = 5, C = 0.5, D = 3
� num_clusters = 8
� num_lat = 20

� B = 5, C = 0.5, D = 3
� num_clusters = 4
� num_lat = 20

� B = 5, C = 0.5, D = 3
� num_clusters = 8
� num_lat = 10

WSCB
� α = 1, num_lat = 10 � α = 0.25, num_lat = 10 � α = 0.5, num_lat = 10 � α = 0.95, num_lat = 10

rate or not it. At each trial t ∈ T , the new user u is selected uniformly to simulate the random
accessing pattern of users in the real world. Then, the system will recommend 1 item i for this
user according to the method Π. Method Π will recommend the new item based on the training
set D, the available items (i.e., the items that have not been recommended yet—I \ Ru ), and the
knowledge Δ achieved until the trial t . After that, the system will update the current knowledge for
the next iterations. Unlike other works, the system is not compelled only to recommend previous
rated items (i.e., those from the test) to avoid a biased solution. All items can be recommended at
each trial as long as it was not recommended in another trial before. Moreover, in our case, we
compel the system to always make T iterations for each new user u.

After that, the recommendations quality are then evaluated by the following:

• Cumulative Reward [30]: It is the cumulative number of hits achieved over T trials. A hit
happens when the item was rated for the target user with a value equals or higher than 4 in
the test set.
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ALGORITHM 2: Evaluation Policy

Require: Training set D, testing set T , number of trials T , and the number of items k to be
recommended for each user per trial

1: Ru ← ∅ ∀u ∈ U // Recommendation list
2: Δ← ∅ // Knowledge around the users
3: N ← |U | ×T // Total number of iterations to play
4: for t = 1, 2, 3, . . . ,N do

5: Δ′ ← ∅ // Saves the current knowledge
6: u ← |U | // Random selects a user u (limited to T trials)
7: it ← Π(u,D, I \ Ru ,Δ) // Gets the item recommended
8: Ru ← Ru ∪ {it } // Saves this item
9: Δ← Δ ∪ {T (u, it )} // Updates the system knowledge

• Precision [47]: It is the number of positive rewards (i.e., items rated with r ≥ 4) after T
interactions.
• Recall [47]: It is the number of positive rewards afterT interactions according to the amount

of possible positive rewards.

6.4 Results and Discussion

First, we measure and analyse the cumulative reward over time. Then, we measure the quality of
each algorithm by reward, precision, and recall in each stage of the user’s journey (recommenda-
tions made for an interval of trials).

6.4.1 The Expected Reward. In Table 3, we report the performance of cumulative precision and
recall throughout 100 trials. In general, the results are pretty consistent with our assumptions.
Methods based on pure-exploration approaches to make the first recommendations (e.g., ϵ-Greedy
and TS) perform worst in the first trials and then get better in the long run (sometimes only af-
ter 100 iterations). In turn, methods that perform a pure-exploitation approach to make the first
recommendations (e.g., Popular, UCB, Linear UCB, and NICF) are effective in the first trials (5 or
10) by achieving high values of precision, but without great benefits in the long run. In this class
of methods, the results of two algorithms are noteworthy: Linear UCB and GLM-UCB. They can
achieve higher accuracy values by handling exploration and exploitation over time. For instance,
the Linear UCB almost achieves the same values as our method in Netflix and Yahoo datasets. In
our opinion, it happens in this dataset due to the strong correlation between the item’s popularity
and its features vector (Figure 2). However, the Linear UCB does not perform as well as our method
in other datasets with weaker correlation, like Good-Books. Even so, the WSCB outperforms the
Linear UCB for T equals 20 and higher in all datasets.

However, methods proposed to handle exploration and exploitation to make the first recommen-
dations (e.g., PTS and our WSCB) can achieve higher levels of precision and recall just after the first
20 interactions. Contrasting the pure-exploitation approaches, they propose attracting the user’s
attention in the first interactions and learning more about his/her preferences. So, when T = 5
andT = 10, the results are close to Popular or NICF. In turn, since the user has given enough feed-
back to the system, such methods outperform other baselines, because they learned more about
the users. However, PTS and WSCB explores distinct strategies to get more information about the
users. In the Bayesian inference theory used in the PTS, the algorithm makes a random estimation
over the prior knowledge when there is no evidence. In turn, our WSCB applies a smarter approach
that selects the items based on the entropy, i.e., how much knowledge each item can provide for
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Table 3. The Performance of Different Bandit

Models on the Selected Datasets

Measure Cumulative Expected Reward

Dataset MovieLens 1M
T 5 10 20 50 100

Random 0.125 0.243 0.499 1.223 2.464
Popular 2.033 3.806 7.003 13.978 22.198

UCB 1.305 2.422 4.344 9.340 16.274
TS 1.567 2.986 5.498 11.549 19.135

e-Greedy 1.309 2.459 4.488 9.550 16.383
Linear UCB 1.633 3.201 6.450 15.073 26.879
GLM-UCB 1.224 2.012 4.988 13.762 25.187

NICF 1.966 3.717 6.984 14.369 21.942
PTS 1.823 3.796 7.488 15.454 24.305

ICTRTS 0.175 0.676 2.069 7.471 16.047
Cluster Bandit 1.282 3.015 6.314 13.569 22.156

WSCB 1.536� 2.508� 7.041� 17.859� 30.791�

Dataset Netflix
T 5 10 20 50 100

Random 0.023 0.051 0.087 0.220 0.453
Popular 1.490 2.977 5.071 10.325 18.422

UCB 0.693 1.325 2.417 5.395 9.870
TS 0.967 1.895 3.509 7.433 13.002

e-Greedy 0.664 1.297 2.393 5.369 9.874
Linear UCB 0.638 1.877 4.595 12.289 22.636
GLM-UCB 0.556 1.231 3.853 11.903 22.424

NICF 1.468 2.678 4.842 10.408 15.723
PTS 0.281 0.688 1.890 5.636 9.742

ICTRTS 0.014 0.056 0.320 2.567 5.674
Cluster-Bandit 0.896 1.968 4.229 9.148 16.317

WSCB 1.089� 1.461� 5.213• 15.184� 25.947�

Dataset Good Books
T 5 10 20 50 100

Random 0.036 0.070 0.148 0.382 0.764
Popular 1.238 2.327 4.246 8.082 12.149

UCB 0.410 0.751 1.348 2.947 5.464
TS 0.773 1.352 2.311 4.536 7.185

e-Greedy 0.445 0.807 1.422 3.090 5.659
Linear UCB 0.644 1.628 2.974 7.154 13.024
GLM-UCB 0.457 0.839 2.822 7.013 12.645

NICF 1.517 2.920 4.588 7.902 10.620
PTS 0.560 1.031 2.056 5.403 11.183

ICTRTS 0.380 1.227 2.806 6.993 11.314
Cluster-Bandit 0.944 2.160 4.031 7.666 11.879

WSCB 1.087� 1.776� 5.469� 11.759� 18.623�

Dataset Yahoo Music
T 5 10 20 50 100

Random 0.021 0.037 0.083 0.188 0.368
Popular 1.614 2.932 5.051 10.460 17.194

UCB 0.503 1.369 3.035 7.339 13.355
TS 0.978 1.922 3.669 8.268 14.675

e-Greedy 0.589 1.429 3.100 7.404 13.307
Linear UCB 1.562 3.103 6.460 15.671 25.508
GLM-UCB 0.865 1.569 5.056 14.120 24.434

NICF 1.846 3.514 6.224 12.114 16.230
PTS 1.571 3.243 6.642 14.416 19.955

ICTRTS 0.013 0.157 1.405 6.042 13.341
Cluster-Bandit 1.019 2.344 4.616 9.845 16.497

WSCB 1.389� 2.414� 7.249� 17.914� 27.247�

As the WSCB uses the first interactions to explore other

items and get more knowledge about the new user, its

accuracy is smaller than the best ones in these trials.

However, after the first 10 interactions, WSCB outperforms

all other baselines by achieving high improvements in the

last trials. The symbols �, •, � denote positive gains, non

significant changes, and negative losses by applying a

Wilcoxon test with a p value = 0.05 over the best baseline.
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the system. Thus, WSCB outperforms the PTS after T = 20 trials in all datasets studied except
in the MovieLens due to the small number of items (i.e., arms). In this case, it happens after the
T = 50.

In short, we can highlight that

(1) Linear ϵ-Greedy quality increases over time, because it requires more time to learn about
users.

(2) TS, PTS, and ICTRTS usually improve their results in the long run as other learning algo-
rithms. These methods start from random choices between the most popular items in the
first iterations, improving their performance over time.

(3) Linear UCB and GLM-UCB work better than traditional UCB, TS, and ϵ-Greedy, since they
are Parametric Bandit algorithms and get the user’s preferences after some interactions.

(4) WSCB outperforms all algorithms over time due to its learning ability that captures the
user’s preferences since the first interactions.

6.4.2 Quality in the User’s Journey. Second, we intend to evaluate the models effectiveness over
the recommendations made at each stage of the user’s experience. In this sense, we split the 100 in-
teractions of each user in three stages. These user’s stages help us to identify the impact of little
changes in the pure cold-start stage. As there is no consensus about the number of trials for each
stage, we inspired on works with distinct analysis about new users [50] and defined some arbitrary
values:

(1) Pure cold-start: evaluating the first trial (1 ≤ T ≤ 5);
(2) Cold-start: evaluating the trials in (6 ≤ T ≤ 20);
(3) Sequential problem: evaluating the trials in (21 ≤ T ≤ 100).

Results are highlighted in Table 4, where we measure the cumulative reward at each stage of
the user’s experience (i.e., the reward achieved based on the items recommended in that stage).
Contrasting the current Parametric Bandit algorithms, WSCB is not focused on simply hitting
the new user’s preferences with best-seller items in the first trials. By balancing exploration and
exploitation in the first recommendations, our method uses the first interactions to learn more
about the new users’ preferences. Thus, as expected by our assumptions, we notice that WSCB is
not the best method in the first stage. However, it is clear that our algorithm is not so far from
the other models that are entirely focused on this first stage, such as Most Popular, NICF, and
others. After it, WSCB can learn quickly and improve its recommendations by fitting the user’s
preferences after 10 items recommended (trials 11–15). Moreover, neither other algorithms can
achieve the same reward level as our method in the following stages. Only the Linear-UCB and
the GLM-UCB can get more rewards in a specific stage in the Yahoo dataset. But it happens due to
the limitations of the offline evaluation where the number of rewards are limited to a few items. In
this case, algorithms that hit only few items in the first intervals have more probability to hit more
items in the remaining intervals, because more items left to be hit. And, as aforementioned, such
algorithms have a slow learning process that starts with higher precision (once it is biased for pure-
exploitation at the beginning). However, only WSCB is mainly focused on delivering more items
that match the user’s taste over his journey in the system, achieving more chances to improve his
engagement.

This behaviour is even more evident in Figure 5, where is highlighted the precision and recall
(y-axes) for each number of items recommended (similarly to the number of trials, once each trial
recommends one item). In terms of precision, we can notice the exact stage in which WSCB over-
comes the other top algorithms—usually after 20 items are recommended. In turn, by analysing
Recall (i.e., the percentage of possible relevant items recommended for each user), we can clearly
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Table 4. The Performance of Different Models on Each Stage

of the New User

Measure Reward in each user’s stage

Dataset MovieLens 1M
T 1–5 6–10 11–15 16–20 21–50 51–100

Random 0.125 0.118 0.137 0.118 0.724 1.242
Popular 2.033 1.773 1.651 1.546 6.974 8.220

UCB 1.305 1.117 0.970 0.951 4.997 6.934
TS 1.567 1.419 1.297 1.215 6.050 7.586

e-Greedy 1.309 1.151 1.033 0.996 5.062 6.833
Linear UCB 1.633 1.568 1.671 1.578 8.623 11.806
GLM-UCB 1.224 0.787 1.416 1.560 8.774 11.425

NICF 1.966 1.751 1.703 1.565 7.385 7.573
PTS 1.823 1.973 1.926 1.766 7.967 8.850

ICTRTS 0.175 0.501 0.657 0.735 5.402 8.576
Cluster Bandit 1.282 1.733 1.790 1.509 7.255 8.587

WSCB 1.553� 1.067� 2.315� 2.196� 10.849� 12.769�

Dataset Netflix
T 1–5 6–10 11–15 16–20 21–50 51–100

Random 0.023 0.028 0.019 0.018 0.132 0.233
Popular 1.490 1.486 0.990 1.105 5.254 8.097

UCB 0.693 0.632 0.549 0.542 2.978 4.474
TS 0.967 0.929 0.826 0.787 3.924 5.569

e-Greedy 0.664 0.632 0.571 0.525 2.976 4.505
Linear UCB 0.638 1.239 1.377 1.341 7.694 10.347
GLM-UCB 0.556 0.674 1.234 1.388 8.050 10.521

NICF 1.468 1.210 1.149 1.016 5.566 5.315
PTS 0.281 0.407 0.572 0.630 3.747 4.106

ICTRTS 0.014 0.042 0.088 0.176 2.247 3.107
Cluster-Bandit 0.896 1.072 1.067 1.195 4.918 7.169

WSCB 1.089� 0.371� 1.834� 1.917� 9.972� 10.762•
Dataset Good Books

T 1–5 6–10 11–15 16–20 21–50 51–100

Random 0.036 0.034 0.037 0.041 0.235 0.382
Popular 1.238 1.089 1.116 0.804 3.835 4.068

UCB 0.410 0.341 0.305 0.293 1.599 2.517
TS 0.773 0.580 0.514 0.445 2.224 2.650

e-Greedy 0.445 0.362 0.320 0.296 1.668 2.569
Linear UCB 0.644 0.985 0.687 0.659 4.180 5.869
GLM-UCB 0.457 0.382 1.100 0.883 4.191 5.633

NICF 1.517 1.403 0.910 0.758 3.314 2.718
PTS 0.560 0.471 0.520 0.504 3.348 5.780

ICTRTS 0.380 0.847 0.800 0.780 4.187 4.322
Cluster-Bandit 0.944 1.216 1.065 0.806 3.635 4.213

WSCB 1.087� 0.689� 2.057� 1.637� 6.290� 6.864�

Dataset Yahoo Music
T 1–5 6–10 11–15 16–20 21–50 51–100

Random 0.021 0.017 0.024 0.022 0.104 0.181
Popular 1.614 1.317 1.083 1.036 5.409 6.734

UCB 0.503 0.866 0.829 0.839 4.303 6.016
TS 0.978 0.944 0.907 0.840 4.599 6.406

e-Greedy 0.589 0.840 0.848 0.824 4.304 5.903
Linear UCB 1.562 1.541 1.655 1.702 9.211 9.836
GLM-UCB 0.865 0.704 1.714 1.774 9.064 10.314

NICF 1.846 1.667 1.450 1.262 5.890 4.115
PTS 1.571 1.671 1.711 1.688 7.774 5.539

ICTRTS 0.013 0.143 0.500 0.748 4.637 7.298
Cluster-Bandit 1.019 1.325 1.200 1.073 5.229 6.652

WSCB 1.389� 1.026� 2.493� 2.342� 10.665� 9.334�

WSCB performs better than other algorithms after some stages by

achieving statistically improvements, because it uses the first stages to

get more information about the users. The symbols �, •, � denote

respectively positive gains, non significant changes, and negative

losses by applying a Wilcoxon test with a p value = 0.05 over the best

baseline.
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Fig. 5. The precision and recall achieved by our WSCB algorithm and the top baselines with k recommended

items. The first line (precision) show how much recommended items were relevant for each user. The second

line (recall) shows how much relevant items were recommended over the total of relevant items available.

As the user receives one item in each trial, the number k also represents the number of trials faced by each

user.

notice the impact of changing the first recommendations to learn more about each new user. Only
WSCB can achieve more than 40%, 25%, and 60% of the relevant items in Netflix, GoodBooks, and
Yahoo, respectively. As assumed by us, our algorithm seems able to retrieve more interesting items
for each user—more potential evidence that WSCB can improve the user’s engagement.

7 CONCLUSION AND FUTURE WORKS

This work shows that inadequate strategies to make the first recommendations for new users
in Contextual Bandits can influence user experience in the long run. According to their imple-
mentations to deal with new users, user’s preference vectors have guided the system to forget
the exploitation/exploration tradeoff and choose only one option for this dilemma. Thus, current
parametric bandit algorithms are making first recommendations based on a random sampling
of the items (i.e., a pure-exploration) or a biased selection of the most popular ones (i.e., a pure-
exploitation). It has created a chain reaction and guided the user to bad experiences in the system.
In this sense, we propose a new WSCB method, introducing popularity and entropy to address
exploration and exploitation concepts since the first recommendation. We hypothesise that it may
maximise the user’s satisfaction in the long run. Indeed, as shown by our experimental evaluation,
WSCB improves the user’s experience by quickly learning the user’s preferences. After a few
user’s interactions, in general, 10 items recommended, WSCB can provide a higher level of preci-
sion and recall than the other 10 baselines. Especially our method is also the one responsible for
hitting more items for the most significant number of distinct users in all datasets. As future work,
we suggest three distinct directions. First, we intend to evaluate our initialisation method in other
contextual bandits, especially the non-linear ones. Second, we intend to investigate the behaviour
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of such algorithms if the system has more information about the users. In some real-world appli-
cations, there is an on-boarding stage where the user fills out a form or answers some questions
about his/her preferences. For this one, we could apply our Active Learning approach to select
the candidate items to fill these forms and then use this background information to create the first
feature vector for the new user. Finally, we also intend to keep investigating how to improve other
stages of the user’s journey. Recent works pointed to some problems related to user-dynamic
preferences. We intend to study how to adapt such bandit models to address these challenges.
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